Cellular fate of a modular DNA delivery system mediated by silica nanoparticles.

نویسندگان

  • Richard A Gemeinhart
  • Dan Luo
  • W Mark Saltzman
چکیده

Development of efficient molecular medicines, including gene therapeutics, RNA therapeutics, and DNA vaccines, depends on efficient means of transfer of DNA or RNA into the cell. Potential problems, including toxicity and immunogenicity, surrounding viral methods of DNA delivery have necessitated the use of nonviral, synthetic carriers. To better design synthetic carriers, or transfection reagents, the modular design of viruses has inspired a modular approach to DNA and RNA delivery. Each modular component can be designed to circumvent each of the many barriers. The modular approach will allow modification of individual components for a specific application. By utilizing a dense silica nanoparticle to form a ternary complex, transfection efficiency of a DNA-transfection reagent complex was increased by a factor of approximately 10 by concentrating the DNA at the surface of cells. Surface modification of the silica nanoparticles allowed determination of the cellular uptake mechanism with only minor alteration of transfection efficiency. Nanoparticles are internalized by an endosome-lysosomal route followed by perinuclear accumulation. The modification mechanism confirms that surface modification of the modular system can allow specific moieties to be incorporated into the modular system without significant alteration of the transfection efficiency. By showing that the modular system based upon concentration of DNA at the level of the cell can be used to increase transfection efficiency, we have shown that further modification of the system may better target DNA delivery and overcome other barriers of DNA expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

An Invitro Study on The Damage of Cell Membrane by Silica Oxide Nanoparticles

Nowadays, growing interest in the application of nanotechnology in biomedical and biotechnological fields has opened a new avenue to explore the nanoparticles-biological system interaction. Indeed, a clear gap is still in the cytotoxic effect of NPs on the biological systems. For this purpose, the interaction of the silica oxide nanoparticles (SiO2-NP) with PC12 cell line, as a model of nervous...

متن کامل

Application of mesoporous silica nanoparticles for drug delivery to cancer cells

Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...

متن کامل

Assessment of a modular transfection system based upon cellular localization of DNA.

Delivery of plasmid DNA for protein production in mammalian cells is not an efficient process. In this study, the theory that cellular localization of plasmid DNA increases transfection efficiency is examined with an emphasis on the understanding of the cellular association of the components of a ternary transfection complex. Mammalian cells take up transfection reagent-DNA complexes primarily ...

متن کامل

Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release.

Effective and controlled drug delivery systems with on-demand release and targeting abilities have received enormous attention for biomedical applications. Here, we describe a novel enzyme-based cap system for mesoporous silica nanoparticles (MSNs) that is directly combined with a targeting ligand via bio-orthogonal click chemistry. The capping system is based on the pH-responsive binding of an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2005